A Discriminatively Trained, Multiscale, Deformable Part Model.
P. Felzenszwalb, D. McAllester, D. Ramaman.
Proceedings of the IEEE CVPR 2008.
The original code was downloaded from: http://people.cs.uchicago.edu/~pff/latent/
I only added some comments to make it easier to read. The comments illustrate how the data structures are designed (should also help understanding the multi-threaded and SSE-optimized implementations).
#include "mex.h" #include <math.h> #include <string.h> /* * This code is used for computing filter responses. It computes the * response of a set of filters with a feature map. * * Basic version, relatively slow but very compatible. */ /* The dimensions for A, B and C are as follows. For example: A = A1*A2*32 single B <2x1 cell> for each cell B{i} = B1i*B2i*32 single Usually A is larger than B (as A is the feature map and B is the filter). C <1x2 cell> for i-th cell is the response for the i-th filter. C{i} = (A1-B1i+1)*(A2-B2i+1)*32 double */ struct thread_data { float *A; float *B; double *C; mxArray *mxC; const mwSize *A_dims; const mwSize *B_dims; mwSize C_dims[2]; }; // convolve A and B (A is feature map, B is filter) void process(void *thread_arg) { thread_data *args = (thread_data *)thread_arg; float *A = args->A; float *B = args->B; double *C = args->C; const mwSize *A_dims = args->A_dims; const mwSize *B_dims = args->B_dims; const mwSize *C_dims = args->C_dims; int num_features = args->A_dims[2]; // for each feature dimension (e.g., 32 dim HOG) for (int f = 0; f < num_features; f++) { double *dst = C; // calibrate the pointer to the base at the f-th dimension float *A_src = A + f*A_dims[0]*A_dims[1]; float *B_src = B + f*B_dims[0]*B_dims[1]; // for each pixel (x,y) on the response map for (int x = 0; x < C_dims[1]; x++) { for (int y = 0; y < C_dims[0]; y++) { double val = 0; // operate along the second dimension (column) of B (filter) // xp is the pointer/offset for the second dimension of B for (int xp = 0; xp < B_dims[1]; xp++) { // calibrate the pointer to the current column // for A it's (x+xp)*(number of elements per column) + (row offset) float *A_off = A_src + (x+xp)*A_dims[0] + y; // for B it's xp*(number of elements per column) float *B_off = B_src + xp*B_dims[0]; // depending on the number of elements per row // if number of elements per row <= 20 then use the loop-less code below // the more general default case which uses for-loop follows // as for most filters number of elements per row <= 20 // this would acclerate the process. switch(B_dims[0]) { case 20: val += A_off[19] * B_off[19]; case 19: val += A_off[18] * B_off[18]; case 18: val += A_off[17] * B_off[17]; case 17: val += A_off[16] * B_off[16]; case 16: val += A_off[15] * B_off[15]; case 15: val += A_off[14] * B_off[14]; case 14: val += A_off[13] * B_off[13]; case 13: val += A_off[12] * B_off[12]; case 12: val += A_off[11] * B_off[11]; case 11: val += A_off[10] * B_off[10]; case 10: val += A_off[9] * B_off[9]; case 9: val += A_off[8] * B_off[8]; case 8: val += A_off[7] * B_off[7]; case 7: val += A_off[6] * B_off[6]; case 6: val += A_off[5] * B_off[5]; case 5: val += A_off[4] * B_off[4]; case 4: val += A_off[3] * B_off[3]; case 3: val += A_off[2] * B_off[2]; case 2: val += A_off[1] * B_off[1]; case 1: val += A_off[0] * B_off[0]; break; default: for (int yp = 0; yp < B_dims[0]; yp++) { val += *(A_off++) * *(B_off++); } } } *(dst++) += val; } } } } // matlab entry point // C = fconv(A, cell of B, start, end); void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { if (nrhs != 4) mexErrMsgTxt("Wrong number of inputs"); if (nlhs != 1) mexErrMsgTxt("Wrong number of outputs"); // get A const mxArray *mxA = prhs[0]; if (mxGetNumberOfDimensions(mxA) != 3 || mxGetClassID(mxA) != mxSINGLE_CLASS) mexErrMsgTxt("Invalid input: A"); // get B and start/end const mxArray *cellB = prhs[1]; mwSize num_bs = mxGetNumberOfElements(cellB); int start = (int)mxGetScalar(prhs[2]) - 1; int end = (int)mxGetScalar(prhs[3]) - 1; if (start < 0 || end >= num_bs || start > end) mexErrMsgTxt("Invalid input: start/end"); int len = end-start+1; // output cell plhs[0] = mxCreateCellMatrix(1, len); // do convolutions thread_data td; const mwSize *A_dims = mxGetDimensions(mxA); float *A = (float *)mxGetPr(mxA); for (int i = 0; i < len; i++) { const mxArray *mxB = mxGetCell(cellB, i+start); td.A_dims = A_dims; td.A = A; td.B_dims = mxGetDimensions(mxB); td.B = (float *)mxGetPr(mxB); if (mxGetNumberOfDimensions(mxB) != 3 || mxGetClassID(mxB) != mxSINGLE_CLASS || td.A_dims[2] != td.B_dims[2]) mexErrMsgTxt("Invalid input: B"); // compute size of output int height = td.A_dims[0] - td.B_dims[0] + 1; int width = td.A_dims[1] - td.B_dims[1] + 1; if (height < 1 || width < 1) mexErrMsgTxt("Invalid input: B should be smaller than A"); td.C_dims[0] = height; td.C_dims[1] = width; td.mxC = mxCreateNumericArray(2, td.C_dims, mxDOUBLE_CLASS, mxREAL); td.C = (double *)mxGetPr(td.mxC); process((void *)&td); mxSetCell(plhs[0], i, td.mxC); } }